Low-res Spectroscopic Followup of Eclipsing Binaries

Hristo Stoev Centre of Astrobiology, Spain

Outline

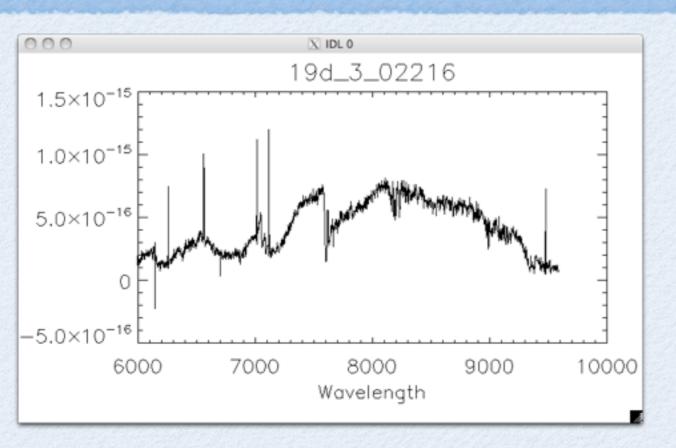
- Observations
- Reduction process
- Comparison between SpT determination with VOSA and The Hammer
- To come...

Observations

- 2.2-m telescope at Calar Alto
- CAFOS Spectrograph
- Low resolution
 spectroscopy R ~ 3000
 (D = 0.204 nm/pix)
- Wavelength range:5900-9000 Å
- 5 observing nights in August 2011

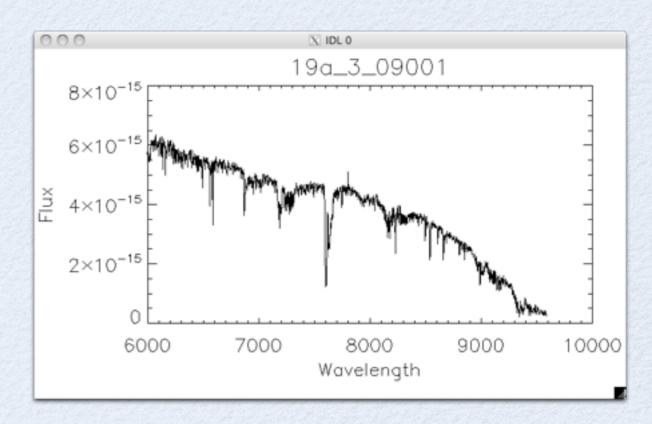
Goal of the project:
 derive spectral type of
 the primary
 components

ID	Exp time	Date
19d_3_11359	600 s	2011-08-04
19d_2_09173	1200 s	2011-08-04
19a_4_04542	1800 s	2011-08-05
19d_4_06245	600 s	2011-08-05
19a_3_09001	180 s	2011-08-05
19d_1_09952	900 s	2011-08-05
19d_3_02216	900 s	2011-08-07
19f_1_07389	2x1800 s	2011-08-07
19d_2_09575	1200 s	2011-08-07
19a_2_10288	1800 s	2011-08-07


Reduction process

Raw images are strongly distorted for direct extraction of the spectrum;

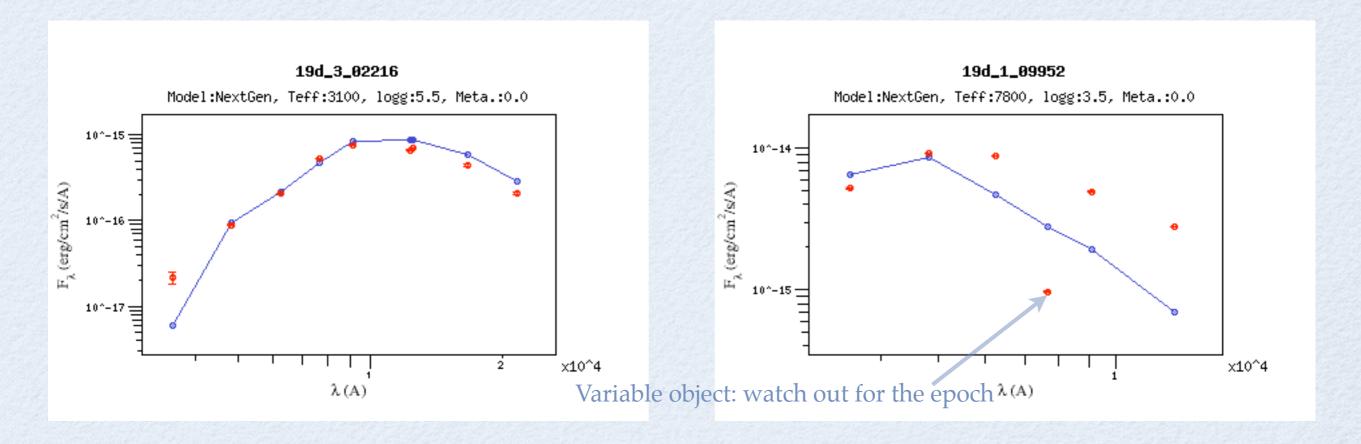
First basic reduction procedures are applied: bias, flatfielding



Reduction process

Resulting spectrum is extracted with IRAF.apall and flux-calibrated with observed standards

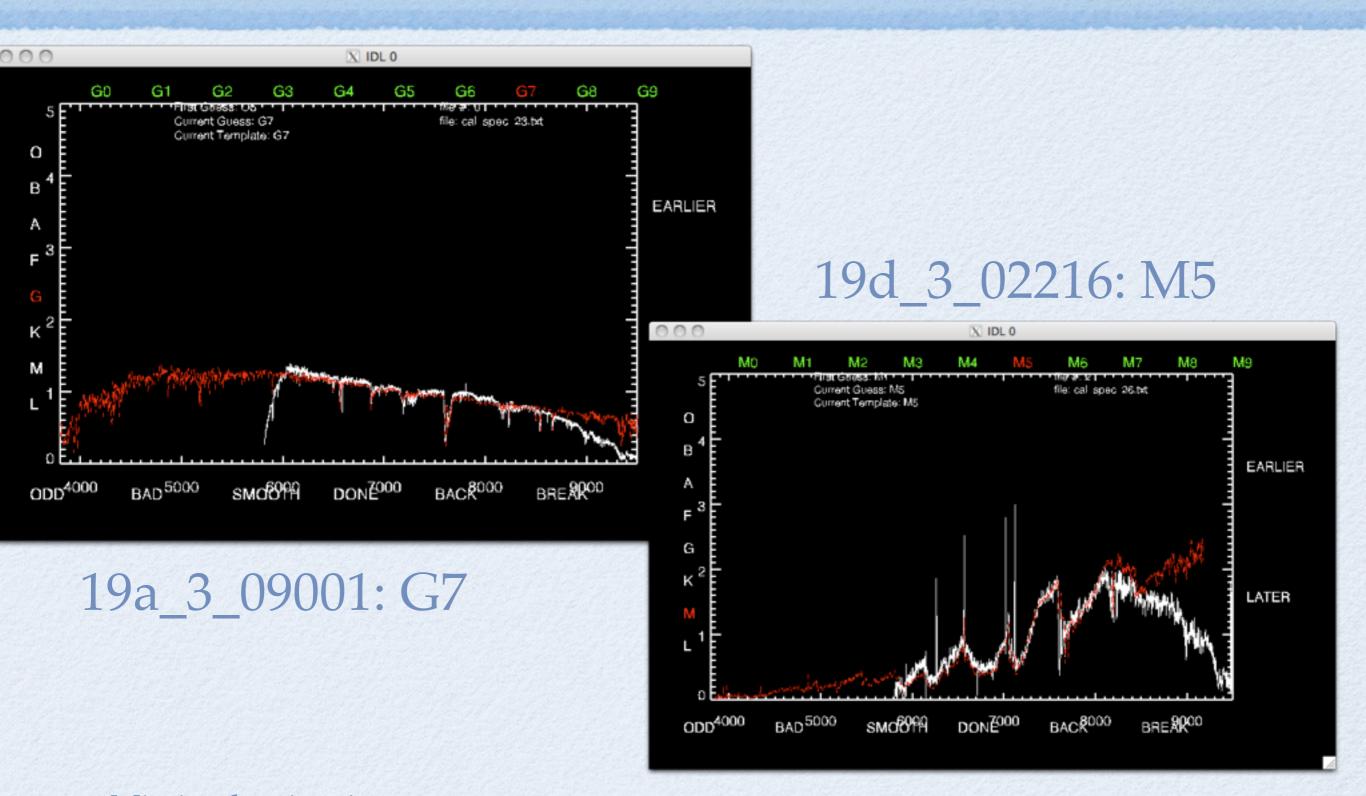
A pipeline has been developed to straighten and calibrate the 2D spectra and prepare them for extraction



Spectral Classification

- Two different methods used for the classification:
 - VOSA (VO SED Analyser, Bayo et al., 2008)
 - The Hammer (IDL Routine, Covey et al., 2007)

VOSA Results


Model fit **Best fit results** Bestfit 19a_2_10288 Hide graphs Delete this fit 19a_3_09001 Object DEC Lbol/Lsun ALbor/Laun **Data VOtables** 19d_1_09952 19a_2_10288 293.331917 36.295272 4800 9.20e+1 5.46e-23 5.51e-6 9/9 19d_3_02216 10.000 NextGen 5.0 0.0 1.77e-12 5.48e-14 0.38 1.71e-7 21590 Syn.Spec. 19d_3_11359 293.264708 10.000 Kurucz 7.93e-7 21590 Syn.Spec. 19d_1_09952 19d_4_06245 293.975042 36.497697 10.000 7800 0.0 3.12e+4 1.39e-4 1.32e-7 12510 Syn.Spec. NextGen 4.47e-11 19d_3_02216 294.461625 10.000 Syn.Spec. 36.796783 NextGen 3.43e-5 4.048-7 21590 19d_3_11359 294.623333 10.000 NextGen 0.0 1.22e-10 3.82e-4 2.55e-6 21590 Syn.Spec. 19d 4 06245 10.000 4250 3.50 0.00 3.35e-11 1.04e-4 5.15e-7 21590 Syn.Spec.

The Hammer

- The Hammer is an IDL spectral typing algorithm to classify spectra with targets spanning the MK spectral sequence;
- The user performs an eye-check of the best-fit template

The Hammer Results

Missing luminosity class of templates

Comparison

ID	VOSA	HAMMER
19d_3_11359	Teff: 5600 K	G6
19d_4_06245	Teff: 4250 K	A9
19a_3_09001	Teff: 4750 K	G7
19d_1_09952	Teff: 7800 K	F0
19d_3_02216	Teff: 3100 K	M5
19a_2_10288	Tef: 4800 K	G0

Discrepancies due to limited coverage of the templates provided with the Hammer (some classes only up to 7400 A)

To add to this...

- Reduce and analyse observed spectral templates with 2.2m/CAFOS for spectral class determination (to be coded with Patricia)
- Mining for flux measurements in the range 8300-9000 A for better flux calibration
- Three more nights due to be reduced and analysed