EVOLUTION OF DWARF GALAXIES: characterizing star formation scenarios

Mariluz Martín-Manjón
Mercedes Mollá
Ángeles Díaz
Roberto Terlevich
HII galaxies: Metal poor systems with massive ionizing stars

Are they really young galaxies?

- Intermediate age and old stars found, even in I Zw18

- **EW(Hβ) vs. O/H**: Only possible due to galactic evolution.

- **EW(Hβ) vs. color**: HII galaxies show more redder colours than expected at low EW

 (Terlevich et al. 2004)
HII galaxies: Metal poor systems with massive ionizing stars

- Are they really young galaxies?

- $\text{EW}(\text{H}_\beta)$ vs. O/H: Only possible due to galactic evolution.

- $\text{EW}(\text{H}_\beta)$ vs. color: HII galaxies show more redder colours than expected at low EW (Terlevich et al. 2004)

What is the SFH of dwarf galaxies?
HII galaxies: Metal poor systems with massive ionizing stars

Are they really young galaxies?

- Intermediate age and old stars found, even in I Zw18

- **EW(H\(\beta\)) vs. O/H**: Only possible due to galactic evolution.

- **EW(H\(\beta\)) vs. color**: HII galaxies show more redder colours than expected at low EW

 (Terlevich et al. 2004)
HII galaxies: Metal poor systems with massive ionizing stars

Are they really young galaxies?

- $\text{EW}(\text{H}\beta)$ vs. O/H: Only possible due to galactic evolution.
- $\text{EW}(\text{H}\beta)$ vs. color: HII galaxies show more redder colours than expected at low EW (Terlevich et al. 2004)

SSPs: Mollá et al. 2009
Obs.data: Hoyos & Díaz 2006
Terleivich et al. 1991

What is the SFH of dwarf galaxies?
HII galaxies: Metal poor systems with massive ionizing stars

Are they really young galaxies?

- Intermediate age and old stars found, even in I Zw18

- EW(Hβ) vs. O/H: Only possible due to galactic evolution.

- EW(Hβ) vs. color: HII galaxies show more redder colours than expected at low EW

 (Terlevich et al. 2004)
What is the SFH of dwarf galaxies?

HII galaxies: Metal poor systems with massive ionizing stars

Are they really young galaxies?

- Intermediate age and old stars found, even in I Zw18

- **EW(Hβ) vs. O/H**: Only possible due to galactic evolution.

- **EW(Hβ) vs. color**: HII galaxies show more redder colours than expected at low EW

(Terlevich et al. 2004)

NOT reproduced by SSPs

* An older underlying non ionizing population **MUST** exist

* Then, how is the star formation history?
What is the SFH of dwarf galaxies?

HII galaxies: Metal poor systems with massive ionizing stars

Are they really young galaxies?

- Intermediate age and old stars found, even in I Zw18

- \(EW(\text{H} \beta) \) vs. \(O/H \): Only possible due to galactic evolution.

- \(EW(\text{H} \beta) \) vs. color: HII galaxies show more redder colours than expected at low EW

 (Terlevich et al. 2004)

NOT reproduced by SSPs

* An older underlying non ionizing population MUST exist

* Then, how is the star formation history?
What is the SFH of dwarf galaxies?

HII galaxies: Metal poor systems with massive ionizing stars

Are they really young galaxies?

- Intermediate age and old stars found, even in I Zw18

- **EW(Hβ) vs. O/H**: Only possible due to galactic evolution.

- **EW(Hβ) vs. color**: HII galaxies show more redder colours than expected at low EW

 (Terlevich et al. 2004)

NOT reproduced by SSPs

* An older underlying non ionizing population **MUST** exist ✓

* Then, how is the star formation history? ?
What is the SFH of dwarf galaxies?

There are 3 star formation scenarios postulated:

- **Bursting SF**: short and intense SF bursts + long quiescent periods

 \[(Davies & Phillips 1988, Bradamante et al. 1998)\]

- **Gasping SF**: long moderate SF bursts + short quiescent periods

 \[(Tosi et al. 1991)\]

- **Continuous SF**: low intensity continuous SF + sporadic bursts

 \[(Legrand 2000)\]
The self-consistent star-bursting evolutionary models

based on Martin-Manjon et al 2008

Successive bursts star formation $t=0-13.2$ Gyrs, $M_{\text{tot}}=10^8 M_{\odot}$

Initial Efficiency (ε):
The amount of gas consumed to form stars in the 1st burst of SF.
- High efficiency
- Low efficiency

Attenuation:
The strength of the successive bursts:
- soft attenuation
- strong attenuation

Time between bursts (Δt):
The quiet periods
$\Delta t= 1.3$ Gyr - 0.1 Gyr - 0.05 Gyr

Different scenarios can be reproduced by changing these three parameters

- **Gasping:** + attenuation, $-\Delta t$; **Continuous:** $-\Delta t$, $-\varepsilon$

TOOLS:

Chemical evolution code (Mollá&Díaz 2005): SFH, evolution of metallicity and abundances

+ **Photoionization code** (CLOUDY, Ferland 1998): emission lines
Initial Efficiency (ε)

Determines the SFR and the initial oxygen abundance (Hoyos et al. 2004, Hoyos & Diaz 2006).

The initial efficiency also drives the behavior of the ionized gas:

The emission lines are produced by the ionizing photons of the massive stars born in the current burst.

- **High efficiency**: high excitation and high abundance galaxies, high [OIII]/H$_\beta$
- **Low efficiency**: less metallic galaxies, with high [OIII]/H$_\beta$ and low [OII]/H$_\beta$ ratios.
Initial Efficiency (ϵ)

Determines the SFR and the initial oxygen abundance \(\text{(Hoyos et al. 2004, Hoyos & Diaz 2006).}\)

The initial efficiency also drives the behavior of the ionized gas:

- **High efficiency** high excitation and high abundance galaxies, high \([\text{OIII}]/H_\beta\)

- **Low efficiency**: less metallic galaxies, with high \([\text{OIII}]/H_\beta\) and low \([\text{OII}]/H_\beta\) ratios.
Initial Efficiency (ε)
Determines the SFR and the initial oxygen abundance (Hoyos et al. 2004, Hoyos & Diaz 2006).

The initial efficiency also drives the behavior of the ionized gas:

The emission lines are produced by the ionizing photons of the massive stars born in the current burst.

- **High efficiency** high excitation and high abundance galaxies, high $[\text{OIII}]/\text{H}_\beta$

- **Low efficiency**: less metallic galaxies, with high $[\text{OIII}]/\text{H}_\beta$ and low $[\text{OII}]/\text{H}_\beta$ ratios.
Attenuation

The strength of the bursts determines the contribution of the underlying non ionizing population:

The higher attenuation the larger contribution from the previous bursts to the total SED.

- **EW(Hβ) vs. O/H:** cover both time scales.
- **EW(Hβ) vs. color:** The contribution of the underlying population to the total continuum must be higher than the contribution of the current burst which dominates the emission line spectrum.

Inter-burst time (Δt)

Sets the age of the underlying population.

The EW(Hβ) decreases more from burst to burst but the colours can be bluer!!
The strength of the bursts determines the contribution of the underlying non ionizing population:

The higher attenuation the larger contribution from the previous bursts to the total SED.

Inter-burst time (Δt) sets the age of the underlying population.

The EW(Hβ) decreases more from burst to burst but the colours can be bluer!!

Attenuation

λ EW(Hβ) vs. O/H:

cover both time scales.

λ EW(Hβ) vs. color:

The contribution of the underlying population to the total continuum must be higher than the contribution of the current burst which dominates the emission line spectrum.
Attenuation

The strength of the bursts determines the contribution of the underlying non ionizing population:

The higher attenuation the larger contribution from the previous bursts to the total SED.

- **EW(Hβ) vs. O/H**: cover both time scales.
- **EW(Hβ) vs. color**: The contribution of the underlying population to the total continuum must be higher than the contribution of the current burst which dominates the emission line spectrum.

Inter-burst time (Δt)

Sets the age of the underlying population.

The EW(H_β) decreases more from burst to burst but the colours can be bluer!!
The strength of the bursts determines the contribution of the underlying non ionizing population: the higher attenuation the larger contribution from the previous bursts to the total SED.

Inter-burst time (Δt) sets the age of the underlying population.

The EW(Hβ) decreases more from burst to burst but the colours can be bluer!!

Attenuation

- λ EW(Hβ) vs. O/H: cover both time scales.
- λ EW(Hβ) vs. color: the contribution of the underlying population to the total continuum must be higher than the contribution of the current burst which dominates the emission line spectrum.
Attenuation
The strength of the bursts determines the contribution of the underlying non ionizing population:

The higher attenuation the larger contribution from the previous bursts to the total SED.

- \(\text{EW}(\text{H}_\beta) \) vs. \(\text{O/H} \): cover both time scales.
- \(\text{EW}(\text{H}_\beta) \) vs. color: The contribution of the underlying population to the total continuum must be higher than the contribution of the current burst which dominates the emission line spectrum.

Inter-burst time \((\Delta t)\)

Sets the age of the underlying population.

The \(\text{EW}(\text{H}_\beta) \) decreases more from burst to burst but the colours can be bluer !!
Summarizing...

In order to reproduce the characteristics of HII galaxies under an specific star formation scenario... 3 parameters must be set:

Initial efficiency, Attenuation, Inter-burst time

Our models can reproduce every observable feature of HII galaxies - abundances, colors and emission lines - simultaneously.

How can we use the models?

Martín-Manjón et al. MNRAS 2008
Martín Manjón et al. 2008 (arXiv0901.1186)
Martín Manjón et al. 2008 (ASPC)
Martín Manjón et. al 2010 (Popstars)
Martín Manjón et al. 2011 (in prep)
χ² tests: II Zw40

It measures the goodness of fit models-observations

We will obtain for the observed galaxy:

- age of the current ionizing population
- age of the underlying population.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OII]3727Å</td>
<td>0.275</td>
<td>5</td>
</tr>
<tr>
<td>[NeIII]3869Å</td>
<td>0.347</td>
<td>15</td>
</tr>
<tr>
<td>[OIII]4363Å</td>
<td>0.077</td>
<td>15</td>
</tr>
<tr>
<td>[HeI]4471Å</td>
<td>0.033</td>
<td>30</td>
</tr>
<tr>
<td>[OIII]4959Å</td>
<td>2.621</td>
<td>5</td>
</tr>
<tr>
<td>[OIII]5007Å</td>
<td>8.095</td>
<td>5</td>
</tr>
<tr>
<td>[HeI]5876Å</td>
<td>0.134</td>
<td>15</td>
</tr>
<tr>
<td>[OI]6300Å</td>
<td>0.019</td>
<td>20</td>
</tr>
<tr>
<td>[NII]6548Å</td>
<td>0.033</td>
<td>15</td>
</tr>
<tr>
<td>Hα</td>
<td>4.700</td>
<td>10</td>
</tr>
<tr>
<td>[NII]6584Å</td>
<td>0.089</td>
<td>10</td>
</tr>
<tr>
<td>[SII]6716Å</td>
<td>0.089</td>
<td>20</td>
</tr>
<tr>
<td>[SII]6731Å</td>
<td>0.087</td>
<td>20</td>
</tr>
<tr>
<td>EW(Hβ)</td>
<td>268</td>
<td>10</td>
</tr>
<tr>
<td>I3730/I5010</td>
<td>4.890</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/H</td>
<td>20×10⁻⁷</td>
<td>1×10⁻⁷</td>
</tr>
<tr>
<td>O/H</td>
<td>500×10⁻⁷</td>
<td>6×10⁻⁷</td>
</tr>
<tr>
<td>S/H</td>
<td>140×10⁻⁷</td>
<td>50×10⁻⁷</td>
</tr>
<tr>
<td>(V-I)</td>
<td>0.020</td>
<td>0.01</td>
</tr>
<tr>
<td>(R-I)</td>
<td>-0.230</td>
<td>0.01</td>
</tr>
</tbody>
</table>

χ² = \sum_{n=1}^{15} \frac{(O_n - T_n)^2}{\sigma_n^2}

Terlevich et al. 1991
Díaz et al. 2007
Telles & Terlevich 1997
Ionizing population: 3 Myr
Underlying population: aprox 2.6 Gyr
I Zw 18

MODEL: low efficiency, intermediate attenuation, $\Delta t = 50\text{Myr}$

Ionizing population: 4 Myr

Age (underlying pop.) approx. 100 Myr

SBS1415

MODEL: low efficiency, strong attenuation, $\Delta t = 1.3\text{ Gyr}$

Ionizing population: 4 - 4.7 Myr

Age (underlying pop.) 1.3 - 2.6 Gyr

Aloisi et al. (2005), underlying $> 1.3\text{ Gyr}$,
Yakobchuk (2008), underlying $< 2\text{ Gyr}$,
Ionizing $< 5\text{ Myr}$

Martin-Manjon et al 2011 (in prep)